Deformed graded Poisson structures, generalized geometry and supergravity
نویسندگان
چکیده
منابع مشابه
Graded Poisson-Sigma Models and Dilaton-Deformed 2D Supergravity Algebra
Fermionic extensions of generic 2d gravity theories obtained from the graded Poisson-Sigma model (gPSM) approach show a large degree of ambiguity. In addition, obstructions may reduce the allowed range of fields as given by the bosonic theory, or even prohibit any extension in certain cases. In our present work we relate the finite W-algebras inherent in the gPSM algebra of constraints to algeb...
متن کاملInstantons, Poisson structures and generalized Kähler geometry
Using the idea of a generalized Kähler structure, we construct bihermitian metrics on CP2 and CP1×CP1, and show that any such structure on a compact 4-manifold M defines one on the moduli space of anti-self-dual connections on a fixed principal bundle over M . We highlight the role of holomorphic Poisson structures in all these constructions.
متن کاملGraded geometry and Poisson reduction
The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result.
متن کاملPoisson Modules and Generalized Geometry
Generalized complex structures were introduced as a common format for discussing both symplectic and complex manifolds, but the most interesting examples are hybrid objects – part symplectic and part complex. One such class of examples consists of holomorphic Poisson surfaces, but in [5],[6] Cavalcanti and Gualtieri also construct generalized complex 4-manifolds with similar features which are ...
متن کاملPoisson-generalized geometry and R-flux
We study a new kind of Courant algebroid on Poisson manifolds, which is a variant of the generalized tangent bundle in the sense that the roles of tangent and the cotangent bundle are exchanged. Its symmetry is a semidirect product of β-diffeomorphisms and βtransformations. It is a starting point of an alternative version of the generalized geometry based on the cotangent bundle, such as Dirac ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2020
ISSN: 1029-8479
DOI: 10.1007/jhep01(2020)007